In [1]:
Copied!
import sys
import json
from IPython import display
import pandas as pd
import numpy as np
import category_encoders as ce
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import ConfusionMatrixDisplay, RocCurveDisplay, precision_score, recall_score
from sklearn.pipeline import Pipeline
# parent directory to work with dev
sys.path.insert(0, '..')
import verifyml.model_card_toolkit as mctlib
from verifyml.model_card_toolkit import model_card_pb2, ModelCard
from verifyml.model_card_toolkit.utils.tally_form import tally_form_to_mc
from verifyml.model_tests.utils import plot_to_str
from verifyml.model_tests.FEAT import (
SubgroupDisparity,
MinMaxMetricThreshold,
Perturbation,
SHAPFeatureImportance,
FeatureImportance,
DataShift
)
import sys
import json
from IPython import display
import pandas as pd
import numpy as np
import category_encoders as ce
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import ConfusionMatrixDisplay, RocCurveDisplay, precision_score, recall_score
from sklearn.pipeline import Pipeline
# parent directory to work with dev
sys.path.insert(0, '..')
import verifyml.model_card_toolkit as mctlib
from verifyml.model_card_toolkit import model_card_pb2, ModelCard
from verifyml.model_card_toolkit.utils.tally_form import tally_form_to_mc
from verifyml.model_tests.utils import plot_to_str
from verifyml.model_tests.FEAT import (
SubgroupDisparity,
MinMaxMetricThreshold,
Perturbation,
SHAPFeatureImportance,
FeatureImportance,
DataShift
)
In [2]:
Copied!
# Credit card fraud Dataset
df = pd.read_csv("../data/fraud.csv")
x = df.drop("is_fraud", axis=1)
y = df["is_fraud"]
# Train-Test data Split
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.5, random_state=50
)
## Build ML model with protected attributes as model features
# Apply one hot encoding to categorical columns (auto-detect object columns) and random forest model in the pipeline
estimator = Pipeline(steps=[('onehot', ce.OneHotEncoder(use_cat_names=True)),
('classifier', RandomForestClassifier(n_estimators=4, max_features="sqrt", random_state = 882))])
# Fit, predict and compute performance metrics
estimator.fit(x_train, y_train)
output = x_test.copy() # x_test df with output columns, to be appended later
y_pred = estimator.predict(x_test)
y_probas = estimator.predict_proba(x_test)[::, 1]
precision_train = round(precision_score(y_train, estimator.predict(x_train)),3)
recall_train = round(recall_score(y_train, estimator.predict(x_train)), 3)
precision_test = round(precision_score(y_test, y_pred),3)
recall_test = round(recall_score(y_test, y_pred), 3)
# Add output columns to this dataframe, to be used as a input for feat tests
output["truth"] = y_test
output["prediction"] = y_pred
output["prediction_probas"] = y_probas
# Dataframe with categorical features encoded
x_train_encoded = estimator[0].transform(x_train)
x_test_encoded = estimator[0].transform(x_test)
# Get feature importance values
df_importance = pd.DataFrame(
{"features": x_test_encoded.columns, "value": estimator[-1].feature_importances_}
)
# Credit card fraud Dataset
df = pd.read_csv("../data/fraud.csv")
x = df.drop("is_fraud", axis=1)
y = df["is_fraud"]
# Train-Test data Split
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.5, random_state=50
)
## Build ML model with protected attributes as model features
# Apply one hot encoding to categorical columns (auto-detect object columns) and random forest model in the pipeline
estimator = Pipeline(steps=[('onehot', ce.OneHotEncoder(use_cat_names=True)),
('classifier', RandomForestClassifier(n_estimators=4, max_features="sqrt", random_state = 882))])
# Fit, predict and compute performance metrics
estimator.fit(x_train, y_train)
output = x_test.copy() # x_test df with output columns, to be appended later
y_pred = estimator.predict(x_test)
y_probas = estimator.predict_proba(x_test)[::, 1]
precision_train = round(precision_score(y_train, estimator.predict(x_train)),3)
recall_train = round(recall_score(y_train, estimator.predict(x_train)), 3)
precision_test = round(precision_score(y_test, y_pred),3)
recall_test = round(recall_score(y_test, y_pred), 3)
# Add output columns to this dataframe, to be used as a input for feat tests
output["truth"] = y_test
output["prediction"] = y_pred
output["prediction_probas"] = y_probas
# Dataframe with categorical features encoded
x_train_encoded = estimator[0].transform(x_train)
x_test_encoded = estimator[0].transform(x_test)
# Get feature importance values
df_importance = pd.DataFrame(
{"features": x_test_encoded.columns, "value": estimator[-1].feature_importances_}
)
Get confusion matrix and ROC curve on train/test set¶
In [3]:
Copied!
# Train set
ConfusionMatrixDisplay.from_estimator(estimator, x_train, y_train)
confusion_matrix_train = plot_to_str()
RocCurveDisplay.from_estimator(estimator, x_train, y_train)
roc_curve_train = plot_to_str()
# Test set
ConfusionMatrixDisplay.from_estimator(estimator, x_test, y_test)
confusion_matrix_test = plot_to_str()
RocCurveDisplay.from_estimator(estimator, x_test, y_test)
roc_curve_test = plot_to_str()
# Train set
ConfusionMatrixDisplay.from_estimator(estimator, x_train, y_train)
confusion_matrix_train = plot_to_str()
RocCurveDisplay.from_estimator(estimator, x_train, y_train)
roc_curve_train = plot_to_str()
# Test set
ConfusionMatrixDisplay.from_estimator(estimator, x_test, y_test)
confusion_matrix_test = plot_to_str()
RocCurveDisplay.from_estimator(estimator, x_test, y_test)
roc_curve_test = plot_to_str()
Run some FEAT Tests on the data¶
In [4]:
Copied!
# ROC/Min Max Threshold Test
smt_test = MinMaxMetricThreshold(
#test_name="", # Default test name and description will be used accordingly if not specified
#test_desc="",
attr="gender",
metric="fpr",
threshold=0.025,
#proba_threshold = 0.6 # Outcome probability threshold, default at 0.5
)
smt_test.run(df_test_with_output=output)
smt_test.plot()
smt_test2 = MinMaxMetricThreshold(
attr="age",
metric="fpr",
threshold=0.025,
)
smt_test2.run(df_test_with_output=output)
smt_test2.plot()
# ROC/Min Max Threshold Test
smt_test = MinMaxMetricThreshold(
#test_name="", # Default test name and description will be used accordingly if not specified
#test_desc="",
attr="gender",
metric="fpr",
threshold=0.025,
#proba_threshold = 0.6 # Outcome probability threshold, default at 0.5
)
smt_test.run(df_test_with_output=output)
smt_test.plot()
smt_test2 = MinMaxMetricThreshold(
attr="age",
metric="fpr",
threshold=0.025,
)
smt_test2.run(df_test_with_output=output)
smt_test2.plot()
In [5]:
Copied!
# Subgroup Disparity Test
sgd_test = SubgroupDisparity(
attr='age',
metric='fpr',
method='ratio',
threshold=1.5,
)
sgd_test.run(output)
sgd_test.plot(alpha=0.05) # default alpha argument shows 95% C.I bands
sgd_test2 = SubgroupDisparity(
attr='gender',
metric='fpr',
method='ratio',
threshold=1.5,
)
sgd_test2.run(output)
sgd_test2.plot(alpha=0.05) # default alpha argument shows 95% C.I bands
# Subgroup Disparity Test
sgd_test = SubgroupDisparity(
attr='age',
metric='fpr',
method='ratio',
threshold=1.5,
)
sgd_test.run(output)
sgd_test.plot(alpha=0.05) # default alpha argument shows 95% C.I bands
sgd_test2 = SubgroupDisparity(
attr='gender',
metric='fpr',
method='ratio',
threshold=1.5,
)
sgd_test2.run(output)
sgd_test2.plot(alpha=0.05) # default alpha argument shows 95% C.I bands
In [6]:
Copied!
# Subgroup Perturbation Test
np.random.seed(123)
pmt = Perturbation(
attr='age',
metric='fpr',
method='ratio',
threshold=1.5,
#proba_threshold=0.6, # Outcome probability threshold, default at 0.5
)
pmt.run(
x_test=x_test,
y_test=y_test,
encoder=estimator[0],
model=estimator[-1]
)
pmt.plot(alpha=0.05) # default alpha argument shows 95% C.I bands
# Subgroup Perturbation Test
np.random.seed(123)
pmt = Perturbation(
attr='age',
metric='fpr',
method='ratio',
threshold=1.5,
#proba_threshold=0.6, # Outcome probability threshold, default at 0.5
)
pmt.run(
x_test=x_test,
y_test=y_test,
encoder=estimator[0],
model=estimator[-1]
)
pmt.plot(alpha=0.05) # default alpha argument shows 95% C.I bands
In [7]:
Copied!
pmt.result
pmt.result
Out[7]:
fpr of original data | fpr of perturbed data | ratio | passed | |
---|---|---|---|---|
age_26-39 | 0.021 | 0.019 | 1.140 | True |
age_40-64 | 0.024 | 0.019 | 1.268 | True |
age_<=25 | 0.012 | 0.024 | 0.482 | True |
age_>=65 | 0.011 | 0.012 | 0.959 | True |
In [8]:
Copied!
# Shapely Importance Features Test
shap_test = SHAPFeatureImportance(
attrs=['gender','age'],
threshold=10
)
shap_test.run(
model=estimator[-1],
model_type='trees',
x_train_encoded=x_train_encoded,
x_test_encoded=x_test_encoded,
)
shap_test.shap_summary_plot(x_test_encoded)
shap_test.shap_dependence_plot(x_test_encoded, show_all=False) # Show only dependence plots of attributes that failed the test
# Shapely Importance Features Test
shap_test = SHAPFeatureImportance(
attrs=['gender','age'],
threshold=10
)
shap_test.run(
model=estimator[-1],
model_type='trees',
x_train_encoded=x_train_encoded,
x_test_encoded=x_test_encoded,
)
shap_test.shap_summary_plot(x_test_encoded)
shap_test.shap_dependence_plot(x_test_encoded, show_all=False) # Show only dependence plots of attributes that failed the test
model_output = "margin" has been renamed to model_output = "raw"
In [9]:
Copied!
# User inputted Feature importance test
imp_test = FeatureImportance(
attrs=['gender','age'],
threshold=10
)
imp_test.run(df_importance)
imp_test.plot(df_importance, show_n=10) # Show top 10 most important features
# User inputted Feature importance test
imp_test = FeatureImportance(
attrs=['gender','age'],
threshold=10
)
imp_test.run(df_importance)
imp_test.plot(df_importance, show_n=10) # Show top 10 most important features
In [10]:
Copied!
# Data distribution Shift Test
shift_test = DataShift(
protected_attr = ['gender','age'],
method = 'chi2',
threshold = 0.05
)
shift_test.run(x_train = x_train, x_test = x_test)
shift_test.plot(alpha=0.05) # default alpha argument shows 95% C.I bands
# Data distribution Shift Test
shift_test = DataShift(
protected_attr = ['gender','age'],
method = 'chi2',
threshold = 0.05
)
shift_test.run(x_train = x_train, x_test = x_test)
shift_test.plot(alpha=0.05) # default alpha argument shows 95% C.I bands
Bootstrap model card from tally form and scaffold assets¶
We can add the quantitative analysis, explainability analysis and fairness analysis sections to a bootstrap model card for convenience. In this example, we use an existing model card which we created from the tally form response. This is meant only as an example - the dataset and risk evaluation in the model card is a fictional use case.
In [11]:
Copied!
# Convert form response to model card protobuf
pb = tally_form_to_mc("sample-form-response.json")
# Initialize the mct and scaffold using the existing protobuf
mct = mctlib.ModelCardToolkit(output_dir = "model_card_output", file_name="credit_card_fraud_example")
mc = mct.scaffold_assets(proto=pb)
# Convert form response to model card protobuf
pb = tally_form_to_mc("sample-form-response.json")
# Initialize the mct and scaffold using the existing protobuf
mct = mctlib.ModelCardToolkit(output_dir = "model_card_output", file_name="credit_card_fraud_example")
mc = mct.scaffold_assets(proto=pb)
Convert test objects to a model-card-compatible format¶
In [12]:
Copied!
# init model card test objects
mc_smt_test = mctlib.Test()
mc_smt_test2 = mctlib.Test()
mc_sgd_test = mctlib.Test()
mc_sgd_test2 = mctlib.Test()
mc_pmt_test = mctlib.Test()
mc_shap_test = mctlib.Test()
mc_imp_test = mctlib.Test()
mc_shift_test = mctlib.Test()
# assign tests to them
mc_smt_test.read_model_test(smt_test)
mc_smt_test2.read_model_test(smt_test2)
mc_sgd_test.read_model_test(sgd_test)
mc_sgd_test2.read_model_test(sgd_test2)
mc_pmt_test.read_model_test(pmt)
mc_imp_test.read_model_test(imp_test)
mc_shap_test.read_model_test(shap_test)
mc_shift_test.read_model_test(shift_test)
# init model card test objects
mc_smt_test = mctlib.Test()
mc_smt_test2 = mctlib.Test()
mc_sgd_test = mctlib.Test()
mc_sgd_test2 = mctlib.Test()
mc_pmt_test = mctlib.Test()
mc_shap_test = mctlib.Test()
mc_imp_test = mctlib.Test()
mc_shift_test = mctlib.Test()
# assign tests to them
mc_smt_test.read_model_test(smt_test)
mc_smt_test2.read_model_test(smt_test2)
mc_sgd_test.read_model_test(sgd_test)
mc_sgd_test2.read_model_test(sgd_test2)
mc_pmt_test.read_model_test(pmt)
mc_imp_test.read_model_test(imp_test)
mc_shap_test.read_model_test(shap_test)
mc_shift_test.read_model_test(shift_test)
In [13]:
Copied!
# Add quantitative analysis
# Create 4 PerformanceMetric to store our results
mc.quantitative_analysis.performance_metrics = [mctlib.PerformanceMetric() for i in range(0, 4)]
mc.quantitative_analysis.performance_metrics[0].type = "Recall"
mc.quantitative_analysis.performance_metrics[0].value = str(recall_train)
mc.quantitative_analysis.performance_metrics[0].slice = "Training Set"
mc.quantitative_analysis.performance_metrics[1].type = "Precision"
mc.quantitative_analysis.performance_metrics[1].value = str(precision_train)
mc.quantitative_analysis.performance_metrics[1].slice = "Training Set"
mc.quantitative_analysis.performance_metrics[1].graphics.description = (
'Confusion matrix and ROC Curve')
mc.quantitative_analysis.performance_metrics[1].graphics.collection = [
mctlib.Graphic(image=confusion_matrix_train), mctlib.Graphic(image=roc_curve_train)
]
mc.quantitative_analysis.performance_metrics[2].type = "Recall"
mc.quantitative_analysis.performance_metrics[2].value = str(recall_test)
mc.quantitative_analysis.performance_metrics[2].slice = "Test Set"
mc.quantitative_analysis.performance_metrics[3].type = "Precision"
mc.quantitative_analysis.performance_metrics[3].value = str(precision_test)
mc.quantitative_analysis.performance_metrics[3].slice = "Test Set"
mc.quantitative_analysis.performance_metrics[3].graphics.description = (
'Confusion matrix and ROC Curve')
mc.quantitative_analysis.performance_metrics[3].graphics.collection = [
mctlib.Graphic(image=confusion_matrix_test), mctlib.Graphic(image=roc_curve_test)
]
# Add quantitative analysis
# Create 4 PerformanceMetric to store our results
mc.quantitative_analysis.performance_metrics = [mctlib.PerformanceMetric() for i in range(0, 4)]
mc.quantitative_analysis.performance_metrics[0].type = "Recall"
mc.quantitative_analysis.performance_metrics[0].value = str(recall_train)
mc.quantitative_analysis.performance_metrics[0].slice = "Training Set"
mc.quantitative_analysis.performance_metrics[1].type = "Precision"
mc.quantitative_analysis.performance_metrics[1].value = str(precision_train)
mc.quantitative_analysis.performance_metrics[1].slice = "Training Set"
mc.quantitative_analysis.performance_metrics[1].graphics.description = (
'Confusion matrix and ROC Curve')
mc.quantitative_analysis.performance_metrics[1].graphics.collection = [
mctlib.Graphic(image=confusion_matrix_train), mctlib.Graphic(image=roc_curve_train)
]
mc.quantitative_analysis.performance_metrics[2].type = "Recall"
mc.quantitative_analysis.performance_metrics[2].value = str(recall_test)
mc.quantitative_analysis.performance_metrics[2].slice = "Test Set"
mc.quantitative_analysis.performance_metrics[3].type = "Precision"
mc.quantitative_analysis.performance_metrics[3].value = str(precision_test)
mc.quantitative_analysis.performance_metrics[3].slice = "Test Set"
mc.quantitative_analysis.performance_metrics[3].graphics.description = (
'Confusion matrix and ROC Curve')
mc.quantitative_analysis.performance_metrics[3].graphics.collection = [
mctlib.Graphic(image=confusion_matrix_test), mctlib.Graphic(image=roc_curve_test)
]
In [14]:
Copied!
# You can add the components of a test (e.g. on explainability) in a report
mc.explainability_analysis.explainability_reports = [
mctlib.ExplainabilityReport(
type="Top 10 most important features", graphics=mctlib.GraphicsCollection(
collection = [mctlib.Graphic(name=n, image=i) for n, i in imp_test.plots.items()]
)
)
]
# Or you can add it as a test directly
mc.explainability_analysis.explainability_reports.append(
mctlib.ExplainabilityReport(type="Protected Attributes should not be model's top important features", tests=[mc_shap_test])
)
# You can add the components of a test (e.g. on explainability) in a report
mc.explainability_analysis.explainability_reports = [
mctlib.ExplainabilityReport(
type="Top 10 most important features", graphics=mctlib.GraphicsCollection(
collection = [mctlib.Graphic(name=n, image=i) for n, i in imp_test.plots.items()]
)
)
]
# Or you can add it as a test directly
mc.explainability_analysis.explainability_reports.append(
mctlib.ExplainabilityReport(type="Protected Attributes should not be model's top important features", tests=[mc_shap_test])
)
In [15]:
Copied!
# The bootstrap template comes with two requirements on fairness analysis:
# Minimum acceptable service and Equal false positive rate
# We add the relevant tests associated with it
mc.fairness_analysis.fairness_reports[0].tests = [mc_smt_test,mc_smt_test2]
mc.fairness_analysis.fairness_reports[1].tests = [mc_sgd_test,mc_sgd_test2]
# We also add a test for attribute shift between the training and testing dataset for additional reliablity check
mc.fairness_analysis.fairness_reports.append(
mctlib.FairnessReport(type="Distribution of attribute subgroups should be silimiar across different datasets", tests=[mc_shift_test])
)
mc.fairness_analysis.fairness_reports.append(
mctlib.FairnessReport(type='Fairness metric for subgroups in original data and perturbed data should be similar', tests=[mc_pmt_test])
)
mct.update_model_card(mc)
# The bootstrap template comes with two requirements on fairness analysis:
# Minimum acceptable service and Equal false positive rate
# We add the relevant tests associated with it
mc.fairness_analysis.fairness_reports[0].tests = [mc_smt_test,mc_smt_test2]
mc.fairness_analysis.fairness_reports[1].tests = [mc_sgd_test,mc_sgd_test2]
# We also add a test for attribute shift between the training and testing dataset for additional reliablity check
mc.fairness_analysis.fairness_reports.append(
mctlib.FairnessReport(type="Distribution of attribute subgroups should be silimiar across different datasets", tests=[mc_shift_test])
)
mc.fairness_analysis.fairness_reports.append(
mctlib.FairnessReport(type='Fairness metric for subgroups in original data and perturbed data should be similar', tests=[mc_pmt_test])
)
mct.update_model_card(mc)
Model Card Display¶
In [16]:
Copied!
# Export to html
html = mct.export_format(output_file="credit_card_fraud_example.html")
display.display(display.HTML(html))
# Export to html
html = mct.export_format(output_file="credit_card_fraud_example.html")
display.display(display.HTML(html))
Model Card for Credit Card Fraud Model
Model Details
Overview
Sample example of a risk assessment of a credit card fraud model. Binary prediction problem (fraud or no fraud). Customers flagged as potentially fraudulent will be passed to internal investigation team for follow-up.Version
name: v1
Owners
Regulatory requirements
MAS Fairness, Ethics, Accountability and Transparency (FEAT) principlesConsiderations
Intended Users
- Credit card fraud team and credit card holders
Use Cases
- Increase accuracy of predicting credit card fraud over the existing rule-based model, saving the bank time and energy for each false positive case and avoiding reputation harm from false negative cases.
Fairness Considerations
-
Group at risk: race, age, genderBenefits: A more precise model will reduce the number of customers being mistakenly labelled as fraudulent in the existing rules based model, which takes 7 man-days to resolve before a credit card could be unfrozen.Harms: Customers who are in the false-positive category will have their credit card frozen and may be excluded from the financial services of the bank for up to 7 days.Mitigation Strategy: Because there is less data for certain demographic groups (e.g. youth, elderly), the model can have much higher/lower false-positive rates for that segment than that of others. We will prioritize such cases after the initial model score to add a 2nd level of check and minimise disruption to the customer.
Datasets
Credit Card Dataset
Standard credit card dataset
Sensitive data
- age
- gender
Sensitive data used in model
- age
- gender
Justification
Age and gender is an important predictor of credit card fraud
CRM
Customer information database
Sensitive data
- age
- gender
- race
- religion
- id
Sensitive data used in model
- age
- gender
Justification
Age and gender is an important predictor of credit card fraud
Quantitative Analysis
Recall - 0.936 (Training Set)
Precision - 0.998 (Training Set)
Confusion matrix and ROC Curve
Recall - 0.77 (Test Set)
Precision - 0.955 (Test Set)
Confusion matrix and ROC Curve
Explainability Analysis
Top 10 most important features
Protected Attributes should not be model's top important features
Shapely Feature Importance Test
Description:
Test if the subgroups of the protected attributes are the top ranking
influential variables under shapely feature importance value. To
pass, subgroups should not be ranked in the top 10
features.
Threshold:
10
Result:
feature_rank | passed | |
age_>=65 | 10.0 | False |
gender_F | 13.0 | True |
gender_M | 16.0 | True |
age_40-64 | 18.0 | True |
age_26-39 | 21.0 | True |
age_<=25 | 26.0 | True |
Failed
Fairness Analysis
Minimum acceptable service
Segment:
Age and gender
Description:
False positive rate for the credit scoring model should be below 2.5% which is the existing average false positive rate of the rule based model
Min Max Threshold Test
Description:
Test if the fpr of the subgroups within gender
is lower than the threshold of 0.025.
Threshold:
0.025
Result:
fpr at current probability threshold | passed | |
gender_F | 0.024 | True |
gender_M | 0.009 | True |
Passed
Min Max Threshold Test
Description:
Test if the fpr of the subgroups within age
is lower than the threshold of 0.025.
Threshold:
0.025
Result:
fpr at current probability threshold | passed | |
age_26-39 | 0.021 | True |
age_40-64 | 0.024 | True |
age_<=25 | 0.012 | True |
age_>=65 | 0.011 | True |
Passed
Equal false positive rate
Segment:
Age and gender
Description:
Disparity ratio of false positive rates of any 2 bins in the respective attribute should not be more than a factor of 1.5
Subgroup Disparity Test
Description:
Test if the maximum ratio of the false postive rate of any 2
groups within age attribute exceeds 1.5. To
pass, this value cannot exceed the threshold.
Threshold:
1.5
Result:
age_fpr_max_ratio | |
0 | 2.094 |
Failed
Subgroup Disparity Test
Description:
Test if the maximum ratio of the false postive rate of any 2
groups within gender attribute exceeds 1.5. To
pass, this value cannot exceed the threshold.
Threshold:
1.5
Result:
gender_fpr_max_ratio | |
0 | 2.574 |
Failed
Distribution of attribute subgroups should be silimiar across different datasets
Data Shift Test
Description:
Test if there is any shift in the distribution of the attribute
subgroups across the different datasets.
To pass, the p-value calculated from a chi-square test
of independence between the datasets should be greater
than 5.0% significance level.
Threshold:
0.05
Result:
training_distribution | eval_distribution | p-value | passed | |
gender_F | 0.526 | 0.544 | 0.234 | True |
gender_M | 0.474 | 0.456 | 0.234 | True |
age_26-39 | 0.23 | 0.229 | 0.798 | True |
age_40-64 | 0.323 | 0.321 | 0.798 | True |
age_<=25 | 0.044 | 0.05 | 0.798 | True |
age_>=65 | 0.403 | 0.4 | 0.798 | True |
Passed
Fairness metric for subgroups in original data and perturbed data should be similar
Subgroup Perturbation Test
Description:
Test if the ratio of the false postive rate of the age
subgroups of the original dataset and the perturbed dataset exceeds
the threshold. The metric for perturbed dataset will be the
denominator. To
pass, this computed value cannot exceed 1.5.
Threshold:
1.5
Result:
fpr of original data | fpr of perturbed data | ratio | passed | |
age_26-39 | 0.021 | 0.019 | 1.14 | True |
age_40-64 | 0.024 | 0.019 | 1.268 | True |
age_<=25 | 0.012 | 0.024 | 0.482 | True |
age_>=65 | 0.011 | 0.012 | 0.959 | True |
Passed
In [17]:
Copied!
# Import model scorecard of second model (without protected attribute as model feature) from external python file
# Same steps taken as the first model, excluding irrelevant tests
# Model card to be compared with that of first model
from model_without_protected_attributes import mc2, mct2
# Import model scorecard of second model (without protected attribute as model feature) from external python file
# Same steps taken as the first model, excluding irrelevant tests
# Model card to be compared with that of first model
from model_without_protected_attributes import mc2, mct2
In [18]:
Copied!
# Export to html
html2 = mct2.export_format(output_file="credit_card_fraud_example2.html")
display.display(display.HTML(html2))
# Export to html
html2 = mct2.export_format(output_file="credit_card_fraud_example2.html")
display.display(display.HTML(html2))
Model Card for Credit Card Fraud Model, without protected attributes as model features
Model Details
Overview
Sample example of a risk assessment of a credit card fraud model. Binary prediction problem (fraud or no fraud). Customers flagged as potentially fraudulent will be passed to internal investigation team for follow-up.Version
name: v1
Owners
Regulatory requirements
MAS Fairness, Ethics, Accountability and Transparency (FEAT) principlesConsiderations
Intended Users
- Credit card fraud team and credit card holders
Use Cases
- Increase accuracy of predicting credit card fraud over the existing rule-based model, saving the bank time and energy for each false positive case and avoiding reputation harm from false negative cases.
Fairness Considerations
-
Group at risk: race, age, genderBenefits: A more precise model will reduce the number of customers being mistakenly labelled as fraudulent in the existing rules based model, which takes 7 man-days to resolve before a credit card could be unfrozen.Harms: Customers who are in the false-positive category will have their credit card frozen and may be excluded from the financial services of the bank for up to 7 days.Mitigation Strategy: Because there is less data for certain demographic groups (e.g. youth, elderly), the model can have much higher/lower false-positive rates for that segment than that of others. We will prioritize such cases after the initial model score to add a 2nd level of check and minimise disruption to the customer.
Datasets
Credit Card Dataset
Standard credit card dataset
Sensitive data
- age
- gender
Sensitive data used in model
- age
- gender
Justification
Age and gender is an important predictor of credit card fraud
CRM
Customer information database
Sensitive data
- age
- gender
- race
- religion
- id
Sensitive data used in model
- age
- gender
Justification
Age and gender is an important predictor of credit card fraud
Quantitative Analysis
Recall - 0.958 (Training Set)
Precision - 0.981 (Training Set)
Confusion matrix and ROC Curve
Recall - 0.711 (Test Set)
Precision - 0.858 (Test Set)
Confusion matrix and ROC Curve
Explainability Analysis
Top 10 most important features
Fairness Analysis
Minimum acceptable service
Segment:
Age and gender
Description:
False positive rate for the credit scoring model should be below 2.5% which is the existing average false positive rate of the rule based model
Min Max Threshold Test
Description:
Test if the fpr of the subgroups within gender
is lower than the threshold of 0.025.
Threshold:
0.025
Result:
fpr at current probability threshold | passed | |
gender_F | 0.059 | False |
gender_M | 0.06 | False |
Failed
Min Max Threshold Test
Description:
Test if the fpr of the subgroups within age
is lower than the threshold of 0.025.
Threshold:
0.025
Result:
fpr at current probability threshold | passed | |
age_26-39 | 0.061 | False |
age_40-64 | 0.059 | False |
age_<=25 | 0.052 | False |
age_>=65 | 0.06 | False |
Failed
Equal false positive rate
Segment:
Age and gender
Description:
Disparity ratio of false positive rates of any 2 bins in the respective attribute should not be more than a factor of 1.5
Subgroup Disparity Test
Description:
Test if the maximum ratio of the false postive rate of any 2
groups within age attribute exceeds 1.5. To
pass, this value cannot exceed the threshold.
Threshold:
1.5
Result:
age_fpr_max_ratio | |
0 | 1.175 |
Passed
Subgroup Disparity Test
Description:
Test if the maximum ratio of the false postive rate of any 2
groups within gender attribute exceeds 1.5. To
pass, this value cannot exceed the threshold.
Threshold:
1.5
Result:
gender_fpr_max_ratio | |
0 | 1.013 |
Passed
Comparision between 2 model cards¶
In [19]:
Copied!
# Compare the score cards (on the same content) between model1 and model2
html_compare=mct.compare_model_cards(mc, mc2, export_path='model_card_output/model_cards/credit_card_fraud_comparision.html')
display.display(display.HTML(html_compare))
# Compare the score cards (on the same content) between model1 and model2
html_compare=mct.compare_model_cards(mc, mc2, export_path='model_card_output/model_cards/credit_card_fraud_comparision.html')
display.display(display.HTML(html_compare))